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Introduction

Permeation testing is becoming a routine method for determining the chemical resistance
of polymer barriers. However, the ability to perform these measurements easily, confidently, and
accurately remains a challenge. This is made more difficult still, by the large diversity of
chemicals requiring evaluation.

Most of the earlier [1-4] studies of permeation have focused on the transport of gases
through a polymer barrier. Many of the liquid permeation studies are carried out using the
immersion into liquid method, which reveals little about the breakthrough [5,6]. Relatively few
have been concerned with the permeation of liquids [7].

Permeation is most often described as the transport of molecules through a barrier of
finite thickness. This process is primarily governed by diffusion of the permeant, which is
defined by a diffusion coefficient and solubility constant. The advantages of permeation studies
are that the diffusion and solubility constants can be measured directly and the breakthrough
time of each permeant/barrier pair can be obtained.

The present study focuses on an automated dynamic method of studying the mechanics
of permeation and diffusion through a series of various elastomers. This technique allows
determination of breakthrough times, solubility, and permeation rates.

Background

Permeation is defined as a process by which a diffusing molecule (permeant) is
transported through a barrier. The mechanism of permeation is usually described as a three-
step process which involves: (a) the sorption of the permeant on the outside surface, (b)
diffusion through the bulk membrane, and (c) desorption of permeant from the opposite surface
into a collecting medium [8].

The fundamental parameters that govern the interactions of a permeant liquid and a
polymer barrier material are the diffusion and solubility coefficients. For barrier polymers with a
uniform thickness, L, and a constant concentration of challenge liquid, Fick's first law takes the
form [9]:

DS
L

where S is the solubility in g/cm3, D is the diffusion coefficient in units of cm2/sec, and J is the
flux in g/cm 2 ° sec. If one considers the simplest case, unidirectional diffusion, Fick's Law
becomes [10]:

J = -DL
dx

where the derivative, ---, is the concentration gradient in the thickness direction.
dx

For the flooded cell permeation experiments conducted in this report, the steady-state
permeation rate can be determined by [11,12]

j = LC
A



where F is the flow rate of nitrogen in ml/min, A is the surface area of sample exposed to the
permeant, and C in mg/ml is the steady-state concentration of permeant in the collection medium.
This equation can be solved assuming the following conditions are met Both the diffusion
coefficient and liquid concentration are constant, and the concentration of the permeant on the
sweep surface is maintained at zero. The diffusion and solubility coefficients can be calculated
by us;, ig these approximation equations.

D= L2

and

s=LQ
D"

By constructing a plot of permeation rate versus time, one can use a simple graphical technique
to estimate values for tl/2 and Q. The value tl/ 2 is defined as the time it takes to reach half of the
steady-state rate. Q, is the steady-state rate permeated in units g/cm2 - sec.

Experimental

Apparatus

A schematic drawing of the experimental apparatus is shown in Figure 1. The 1.5-inch
diameter (4.9 cm2 exposed area) test specimens were prepared for testing by using a circular
cutting die. The permeation test cell used in the experiment was purchased from the Radian
Corporation of Austin, TX. The entire permeation cell is located in an isothermal chamber
maintained at370C. The analysis is run for a minimum of six hours and a data point is acquired
every three minutes.

The test specimen is clamped between two stainless steel components, forming two
compartments. The top compartment is called the challenge reservoir. It holds approximately
two milliliters of permeant liquid. The bottom compartment, named the sweep volume, is
continuously swept by clean air at a flow rate of 770±50 ml/min. The test procedure is now
ready to begin.

The permeant is allowed to diffuse from the challenge reservoir surface of the sample to
the sweep volume side. The sweep volume is carried through a short length of heated tubing to
a Sample Selection System. This piece of equipment allows the user to pass all or a known
fraction of the permeant stream onto the Stream Selection System. Here, the computer follows a
pre-programmed pattern to select which test cell (if more than one is being used) the gas
chromatograph will receive. Once the cell is chosen. the stream is pulled by vacuum onto a cold
(500C) Tenax solid sorbent tube. The sorbent is then flashed at 2400C. Nitrogen, at a flow rate
of 300 ml/min, is used to push the flashed molecules into the cold GC column. The column
temperature is then ramped from 50 to 2000C within 30 seconds. The exit of the column is
connected to a flame photometric detector, which has a sensitivity of one nanogram to sulfur
containing compounds. A value is then received by the computer and interpreted.
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The system is calibrated by injecting known amounts of DMSO and measuring the
resultant peak height. A calibration curve of peak height response to DMSO amount yields a
straight line with a correlation coefficient confidence ? 0.98.

Materials

Six elastomers were evaluated using the previously described system. Included
were:

1. sulphur cured natural rubber (NR)
2. thiourea cured hydrin (EC) elastomer
3. oxide cured neoprene (CR)
4. sulphur cured styrene-butadiene rubber (SBR)
5. sulphur cured nitrile rubber (NBR)
6. cured fluorocarbon elastomer (FR)

All elastomers contained carbon black as a reinforcing filler. All elastomeric compounds
were formed in 6 x 6 inch sheets by Smithers Scientific and cut prior to testing into 1.5-inch
diameter disks. The disk's surfaces were cleaned with isopropyl alcohol.

Results and Discussion

Figure 2 shows a typical steady-state permeation curve for DMSO permeating through a
12.1-mil thick natural rubber specimen. The curve shows the permeation rate (ng/min) as a
function of time (min) and is notably sigmoidal in shape. In general, the curve can be broken
down into three discreet sections, (1) lag time, where no permeant has broken through, (2) a
transient region, where a steady increase in permeation rate is seen, and finally (3) a plateau of
steady-state permeation. The breakthrough time is defined as the duration from time zero to initial
detection of permeation within the detection limit of machine.

Figure 3 shows a typical permeation curve for SBR/DMSO. This curve closely resembles
the curve obtained for NR. Both of these curves follow classical Fickian diffusion.

Figures 4, 5, and 6 show the pemeation curves obtained for CR, NBR, and FR. The
curves begin with consistent lag times, followed by a steady increase in permeation rate similar
to curves obtained for NR and SBR. However, the permeation rate does not reach a steady-
state level. Instead, the permeation rate reaches a maxima then steadily declines. This kind of
behavior has been observed previously by other researchers and may be attributed to possible
structural modifications during the course of the experiment (13]. These curves all exhibit large
permeation rates. These rates can generally be attributed to moderate swelling effects of the
polymer membranes.

Figure 7 shows the permeation curve for EC. This curve exhibits a very sharp increase
in permeation rate until steady-state is quickly achieved. This can be attributed to a very high
degree of swelling. Mobility throughout the polymer is so greatly increased, diffusion is almost
instantaneous. From these graphs, the following trend in swelling can be determined.
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Swelling EC>FR>NBR>CR>SBR = NR Non-Swelling

Table 1 summarizes the permeation data for the six elastomers evaluated. In this table
we define the parameter P, as the permeation constant. This is simply the product of the
diffusion and solubility constants, P = DS. A distinctive trend can be drawn when comparing the
elastomers. The permeation rate is slow for NR and SBR, but significantly faster for FR and EC.
This is also seen in the solubility and permeation constants. One possible explanation for this
trend is the polarity interactions between the liquid and the polV:-I~ers.

It has been reported that the solubility and diffusibility are governed by polyrmer-penetrant
interactions [13,14]. Liquid penetrants having polarity indeces that most closely match the
polarity index of the polymer exhibit faster permeation rates [15]. Therefore, polar compounds
permeate faster through polar polymers and non-polar compounds would permeate faster
through non-polar polymers. The liquid penetrant used in this experiment was DMSO, a highly
polar compound assigned a polarity index of 6.5. Table 2 lists the polarity index for some
common solvents. These values can be compared to the polarity index of individual elastomers
to estimate permeation rates for any polymer-penetrant combination. Table 3 lists the estimated
polarity index for the elastomers used in this study.

An attempt to correlate the solubility and permeation constants with the polarity index is
shown in Figures 8 and 9. A general experimental trend is seen between the solubility
parameter and polarity index. An even better correlation is found between the permeation
constant and polarity index. The polarity index for the fluorocarbon rubber is not known. It has
been estimated to have an index of approximately 5.0 from the permeation rate-time curve.

In the case of gas diffusion in an elastomer, it has been observed that the diffusion
constant varies with polymer mobility, which is dependent upon the difference in the
experimental temperature and the polymers glass transition temperature. Figure 10 presents the
change in D with the polymer mobility as estimated by T-Tg. A linear trend is observed for the six
elastomers tested over the 370 to 1 100C temperature range. These results suggest that polymer
mobility is the key determinant in the liquid and gas diffusion process.

Conclusions

An automated experimental method is described which effectively can measure diffusion,
solubility, and permeation rates through rubbery protective membranes. This technique,
depending on the detector of choice, can accurately measure permeation rates down to
nanogram levels. This approach offers the potential of studying permeating liquid mixtures.

Utilizing this technique we have studied the diffusion and permeation of six elastomers.
Using DMSO, a highly polar liquid, as a permeant it was found that the more polar polymers (FC
and EC) exhibited faster diffusion and permeation rates, while the less polar polymers (NR and
SBR) showed the opposite.

The permeation performance of these rubbers has been related to the polarity index,
which is a measure of the polarity exhibited by the base polymer. Polymers with a high polarity
index showed faster permeation rates while non-polar polymers showed slower permeation
rates. Additionally, the diffusion is affected by polymer mobility. A linear trend of the diffusion
constant with T-Tg is observed.
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Tabl- 1. Permeation data

ELASTOMER THICKNESS BREAKTIME DIFFUSION SOLUBILITY PERMEATION
SAMPLE mils rnin cm2 /sec ncq/cm 3  ng/sec*cm

EC 18.1 38 3.89.10-8 6.99-1010 2233
FC 25.0 59 3.72-10-8 4.58-1010 1708

NBR 18.5 25 2.97-10-8 1.15"1010 341
CR 22.0 40 2.36-10-8 7.03-10 9  179
NR 24.0 136 2.41-10-8 6.08-109 146

SBR 21.0 102 1.88-10-8 6.57-109 104

Table 2. Polarity index for various liquids

LIQUIDS POLARITY INDEX

n-Hexane 0.0
Carbon Disulfide 1.0
Carbon Tet. 1.7
Toluene 3.2
n-Propy( Alcohol 4.3
Ethyl Alcohol 5.2
Acetone 5.4
Acetonitrile 6.2
DMSO 6.5
Formamide 7.3
Water 9.0

Table 3. Polarity index for elastomers

POLYMER POLARITY INDEX
NR 1.3

SBR 1.3

CR 3.0
NBR 3.6
FC 5.0*
EC 5.6

* Polarity index for FC is estimated from the permeation curves.
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